THE CRYSTAL AND MOLECULAR STRUCTURE OF 3-N-PYRIDYLSYDNONE

Jindřich Hašek ${ }^{a}$, Paul T. Beurskens ${ }^{b}$, Jiří Obrda ${ }^{c}$, Stanislav Nešpůrek ${ }^{a}$, Hendrik Schenk ${ }^{d}$, Kees Goubitz ${ }^{d}$, Karel Huml ${ }^{a}$ and Jan Dirk Schagen ${ }^{d}$
${ }^{a}$ Institute of Macromolecular Chemistry, Czechoslovak Academy of Sciences, 16206 Prague 6, Czechoslovakia,
${ }^{b}$ Laboratory of Crystallography,
University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, Netherlands,
${ }^{c}$ Institute of Hydrodynamics,
Czechoslovak Academy of Sciences, 16612 Prague 6, Czechoslovakia and
${ }^{d}$ Laboratory of Crystallography,
University of Amsterdam, Nieuwa Achtergracht 166, 1018 WS Amsterdam, Netherlands

Received December 27th, 1984

Dedicated to Dr B. Sedláček on the occasion of his 60. birthday.

The title compound studied for its photochromic properties crystallizes in the monoclinic system, the space group $P 2 / c, a=734 \cdot 3(6), b=933 \cdot 3(8), c=2334 \cdot(2) \mathrm{pm}, \beta=117.71(5)^{\circ}, V=1.416(2)$ $\mathrm{nm}^{3}, Z=8$, measured and calculated density $D_{\mathrm{m}}=1.51, D_{\mathrm{x}}=1.53 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{CuK} \alpha)=$ $=\therefore 154.178 \mathrm{pm}, \mu=1.0 \mathrm{~mm}^{-1}, F(000)=672, M_{\mathrm{r}}=163.14, \mathrm{~T}=296 \mathrm{~K}$. Final $R=0.084$ for 1511 significant ($I>1.96 \sigma_{1}$) reflections. The molecules are roughly parallel with the (100) plane and are stacked so that the sydnone ring of the first independent molecule partly overlaps the pyridyl ring of the second independent molecule. This results in the infinite column of partly overlaping pyridyl and sydnone rings in distances $344(4)$ and $335(4) \mathrm{pm}$, parallel with the a axis. Symmetrically independent molecules simulate pseudo 2_{1} axis.

The mechanism of photochromy of 3-N-pyridylsydnone, first observed by Tien and Hunsberger ${ }^{1}$, has not been satisfactorily explained. The formation of colour centres, similarly to alkali halides, was supposed ${ }^{2}$ basing on a considerable increase of the electric current during the thermal bleaching of coloured crystals ${ }^{3}$ and basing on the bleaching under the influence of e.m.f f^{4}. On the other hand, radiolysis, flash photolysis, and optical absorption experiments ${ }^{5}$ proposed the mechanism of photochromy based on the intermolecular charge-transfer transition.

Also, our experiments with a series of new photochromic 4-alkenyl-3-phenylsydnones ${ }^{6-9}$ showed no effects which could be expected for materials containing colour centres of the F and F^{\prime} type. Furthermore, some of these compounds were photochromic in frozen solutions in ethanol, methylpentane, (ether - isopentane - ethyl alcohol mixture, EPA) and in polymeric matrices at low temperatures ${ }^{6,7}$. Especially,
the 4-(3-methyl-1-buten-2-yl)-3-phenylsydnone was photochromic in frozen solutions, but non-photochromic in the crystalline state.

The crystal and molecular structures of sydnones were studied by us ${ }^{10-13}$ and Hope, Thiessen, Barninghausen, Jellinek, Munnik, Vos ${ }^{14-16}$. It seems that the intermolecular interactions are important for the stabilization of the coloured form. In this paper we report the crystal and molecular structure of $3-\mathrm{N}$-pyridylsydnone determined from crystal X-ray diffraction data.

EXPERIMENTAL

The title compound forms transparent colourless crystals in the dark. The absorption UV spectra at room temperature possess two characteristic bands with maxima at $317 \mathrm{~nm}(3.49)$ and 235 nm (3.93) in ethanol, 320 nm (3.86) and $236 \mathrm{~nm}(4.28)$ in EPA, $330 \mathrm{~nm}(3.06)$ and 238 nm (3.45) in heptane with a shoulder on the long-wavelength part of the second absorption band at 260 to 270 nm (the numbers in parentheses represent the logarithm of the molar absorption coefficient). The diffusion reflection spectrum yields maxima at 237,270 (weak), and 320 nm . The colour change of the crystalline phase is observed immediately after irradiation with light of a wavelength shorter than 430 nm . This new reversible broad absorption band with the maximum at $\sim 630 \mathrm{~nm}$ is shown in Fig. 1. The crystals of the title compound do not become coloured at the temperature of liquid nitrogen when irradiated, but the subsequent increase of temperature leads to blue colouration already without irradiation. No colour change was observed in frozen solutions. Bleaching of the coloured material occurs tia a thermal, nearly monomolecular process with the halftime $\sim 6000 \mathrm{~s}$ in the dark at 293 K . This process may be accelerated by irradiation with visible and infra-red light with $\lambda>500 \mathrm{~nm}$.

The density of crystals of $3-\mathrm{N}$-pyridylsydnone was measured by flotation in aqueous NaCl solution. Intensity measurements were performed with the Syntex $\mathrm{P} 2_{1}$ diffractometer, graphite monochromator, $\mathrm{CuK} \alpha$ radiation, on a crystal grounded to a sphere with $r=0.7 \mathrm{~mm}$. The unit

Fig. 1
Diffusion reflection spectra of crystalline $3-\mathrm{N}$-pyridylsydnone: -__ in the dark, ----- irradiated for 15 s with light of 400 to 480 nm
cell parameters were refined from 22 reflections with 2Θ from 16 to 26°. Systematic absences $h 0 l: l=2 n+1$. Almost exact (within 3 e.s.d.'s) absences of $0 k 0: k=2 n+1$ reflections were caused by pseudo 2_{1} screw axes. Reflected intensities were measured up to $\sin \Theta / \lambda=5.5 \mathrm{~nm}^{-1}$ with $\Theta-2 \Theta$ scan. The crystals slowly deteriorated during the measurement $(45 \mathrm{kV}, 20 \mathrm{~mA}$, 180 hours). Four standard reflections showed a decrease of about 13%. A few maxima with intensities from 5 to 12 e.s.d.'s in positions of systematically absent and pseudo-absent reflections decreased to less than 4 e.s.d.'s when checked by ψ scan. Intensity measurements were made by variable scan rate with the minimal rate $1.4 \mathrm{grad} / \mathrm{min}$. 400 reflections were classified as unobserved according to the criterion $I<1.96 \sigma_{\mathrm{I}}$. Absorption and extinction corrections were not applied. An anisotropic Wilson plot showed that the set of observed structure factors suffered from highly anisotropic effects.

Structure Determination and Refinement
Initially, the extinctions $0 k 0: k=2 n+1$ caused by a pseudo 2_{1} axis were taken as systematic absences and the space group was assumed to be $P 2_{1} / c$. Direct methods, MULTAN ${ }^{17}$ and SIMPLE ${ }^{18}$, produced one well-defined, almost planar molecule but the pattern of the second one was in all cases disordered around the centre of symmetry.* All attempts to find the remainder of the structure by repeated Fourier syntheses and DIRDIF ${ }^{19}$ failed. However, strengthened translation functions ${ }^{20}$ gave the null-vector with very high correlation factors showing that the molecule was correctly positioned with respect to the $P 2_{1} / c$ symmetry elements. We then decided to run DIR DIF in space group $P 1$, using the original input molecule, and reflection data expanded to triclinic symmetry, The procedure for the scaling of the difference structure factors ${ }^{21}$ showed anomalies in the separate temperature factors for the known atoms and for the remainder of the structure. This may be caused either by the anisotropy of the data or by errors in the geometry of the input molecule, especially the planarity of the model. Therefore we imposed a $\sin \Theta / \lambda$ cutoff ($4.6 \mathrm{~nm}^{-1}$) and used the DIRDIF results with care. Although eight molecules were recognized in the DIRDIF-Fourier map, only 23 new peaks were selected from the highest peaks, with preference given to atoms with the largest deviations from planarity. The 35 atoms were used in DIRDIF for a second run in space group $P 1$, which resulted in the determination of eight well-defined molecules. A few missing atoms were located by a weighted Fourier synthesis.

All eight molecules are paired by a well-defined c-glide plane, but they are divided into two groups, each of them forming a sub-structure in $P 2_{1} / c$, explaining thus the $0 k 0$ absences. However, the two sub-structures are related by a two-fold rotation axis, and the space group was thus found to be $P 2 / c$. The initial R-value, after transformation and averaging according to the space group symmetry, was $0 \cdot 33$. Full matrix least-squares refinement based on F magnitudes ${ }^{22}$ was used with default scattering factors ${ }^{23.24}$. Non-hydrogen atoms were refined anisotropically and hydrogen atoms (located from the difference map) isotropically to $R=0.084$ for 257 refined parameters and 1511 reflections. The final difference map gave no significant features, the maximum peak height being $32 \mathrm{el} \mathrm{pm}^{-3}$.

DISCUSSION

The final positional and thermal parameters of non-hydrogen atoms are given in Table I, and for hydrogen atoms in Table II. The numbering of atoms, interatomic

[^0]distances, and interbond angles are given in Fig. 2. Projection of the crystal structure along a axis is shown in Fig. 3. Including the title compound, ten independent determinations of sydnone ring were found in the literature. The title compound has extremal values of the following intramolecular parameters: Both bonding distances $\mathrm{N}(3)-\mathrm{C}(4) 133 \cdot 0(6)$ and $132 \cdot 3(6) \mathrm{pm}$ are the shortest ones, the angles $\mathrm{C}(4)-\mathrm{C}(5)-$ $-\mathrm{O}(6) 136 \cdot 7(2)$ and $138 \cdot 1(2)$ are the widest and the adjacent angles $\mathrm{O}(1)-\mathrm{O}(5)-\mathrm{O}(6)$

Table I

Final positional parameters with their estimated standard deviations (. 10^{4}) and $U_{\text {eq }}$ values (. $10^{-1} \mathrm{pm}^{2}$) of the non- H atoms

Atom	x / a	y / b	z / c	$U_{\text {eq }}$
Molecule (1)				
O(11)	2300 (6)	440(3)	$5835(2)$	94(2)
N(21)	2 228(7)	$1718(4)$	$5524(2)$	86(2)
N(31)	2 497(6)	2 693(4)	$5962(2)$	73(2)
C(41)	2 696(9)	2 174(5)	$6520(2)$	83(3)
C(51)	2 584(8)	684(5)	$6459(2)$	83(3)
O(61)	2 688(7)	- 341(4)	$6800(2)$	109(3)
C(71)	$2532(7)$	$4182(5)$	$5798(2)$	73(3)
C(81)	$3045(10)$	$4536(6)$	$5324(3)$	94(4)
$\mathrm{N}(91)$	3 128(7)	$5903(5)$	$5156(2)$	97(3)
C(101)	2 581(9)	6910 (6)	$5446(3)$	86(3)
C(111)	$1984(10)$	6 629(6)	$5912(3)$	98(4)
C(121)	$1924(9)$	$5205(6)$	$6087(3)$	91(3)
Molecule (2)				
$O(12)$	2 158(7)	4571 (4)	$3396(2)$	103(2)
N (22)	$2036(8)$	3 295(5)	$3677(2)$	102(3)
N(32)	2 497(6)	$2337(4)$	$3362(2)$	73(2)
C(42)	$2867(10)$	$2851(6)$	2895 (3)	92(4)
C(52)	2 695(9)	$4333(6)$	$2898(2)$	90(3)
$\mathrm{O}(62)$	$2853(7)$	$5354(5)$	$2601(2)$	122(3)
C(72)	$2537(7)$	858(5)	$3550(2)$	72(3)
C(82)	$2729(9)$	558(6)	4 156(3)	91(4)
$\mathrm{N}(92)$	2 721(8)	- 795(6)	4346 (2)	106(3)
C(102)	2 571(9)	- 1849 (7)	3 945(3)	94(4)
C(112)	2 366(10)	$-1629(6)$	3333 (3)	92(4)
C(122)	$2370(8)$	- 221(6)	$3134(2)$	81(3)

Table II

Final positional parameters with their estimated standard deviations (. 10^{4}) and U values (. $10^{-2} \mathrm{pm}^{2}$) of the H atoms

Atom	x / a	y / b	z / c	$U_{\text {iso }}$
	Molecule (1)			
H(41)	304(6)	280(5)	691(2)	6(1)
H(81)	374(10)	395(8)	516(3)	15(3)
H(101)	254(6)	787(5)	532(2)	6(1)
H(111)	170(7)	759(7)	616(3)	11(2)
H(121)	146(5)	505(4)	643(2)	$6(1)$
	Molecule (2)			
H(42)	359(9)	231(8)	278(3)	14(2)
$\mathrm{H}(82)$	285(6)	142(5)	446(2)	8(1)
H(102)	244(7)	- 279(6)	407(2)	8(1)
H(112)	226(9)	267(8)	302(3)	12(2)
H(122)	213(6)	$0(5)$	267(2)	$7(1)$

a

Collection Czechoslovak Chem. Commun. [Vol. 50] [1985]

Fig. 2
Projection of the independent part of the unit cell of 3-N-pyridylsydnone perpendicular to the plane going through both pyridyl centres and $C(72)$. a Numbering scheme; b interatomic distances: e.s.d.'s between non-hydrogen atoms from $0.6-0.8 \mathrm{pm}$, for hydrogen bonds from 4 to 7 pm ; c interbond angles; e.s.d.'s of angles involving only non-hydrogen atoms are $0.2-0.4^{\circ}$, e.s.d.'s of angles involving also hydrogen atoms are $1-3^{\circ}$
$119 \cdot 3(2)$ and $119 \cdot 2(2)$ are the lowest among all ten compared structures ${ }^{13}$. Also, the dihedral angles between the sydnone and pyridyl rings in the same molecule, $26 \cdot 1(2)$, and $19 \cdot 8(2)^{\circ}$, correspond just to the two lowest torsions observed between the sydnone ring and its aromatic substituent. Compare with $27 \cdot 6,30 \cdot 0,54 \cdot 9,58 \cdot 9$, and $63 \cdot 8^{\circ}$ for 3 -(p-bromophenyl)sydnone ${ }^{14}$, 3-phenylsydnone ${ }^{16}$, 4-(3-methyl-1-buten-2-yl)-3-phenylsydnone ${ }^{10}$, 4-bromo-3-pyridylsydnone ${ }^{11}$, and 4 -(cyclohexen-1-yl)-3-phenylsydnon^{12}, respectively. This observation proposes that the torsion along $N(3)-C(7)$ is principally influenced by the presence of a substituent on $C(4)$. The quasiplanar molecules make possible the stacking of the almost parallel sydnone rings and pyridyl rings (dihedral angles $2 \cdot 4(2)$ and $4 \cdot 0(2)^{\circ}$) so that the alternating symmetrically independent molecules form infinite columns along the a direction. The angle between wo independent sydnones (including carboxyl oxygen) is $22.2(2)^{\circ}$, and between

Fig. 3
Projection of the crystal structure of $3-\mathrm{N}$-pyridylsydnone along a axis
pyridyls, $23.7(2)^{\circ}$. A statistical χ^{2} test for the planarity of sydnone and pyridyl rings gives $3 \cdot 9,8 \cdot 4$ for the first and $28 \cdot 8,3 \cdot 2$ for the second independent molecule. The corresponding ring puckering coordinates ${ }^{25,26}$ are $q=1.0(6), 1 \cdot 5(6) \mathrm{pm}$ and $\varphi=$ $=-120(37),-89(22)^{\circ}$ for sydnone rings and $Q=3 \cdot 4(6), 1 \cdot 3(8) \mathrm{pm}, \varphi=-166(16)$, $167(89)^{\circ}, \theta=137(11), 22(30)^{\circ}$ for pyridyl rings. Viewing the structure perpendicularly to the pyridyl rings, the $C(51)=O(61)$ lies approximately under $C(112)-C(122)$ and both bonds make in projection an angle $20(1)^{\circ}$. The relatively short perpendicular distance of the pyridyl and sydnone planes in the stack (344(4) and 335(4) pm)

Table III
The anisotropic thermal coefficients U_{ij} with their estimated standard deviations (. $10^{-1} \mathrm{pm}^{2}$) for all non-H atoms

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Molecule (1)						
O(1)	151(3)	55(2)	79(2)	-3(2)	75(2)	-1(2)
$\mathrm{N}(21)$	132(4)	58(2)	69(3)	-3(2)	61(3)	2(2)
N(31)	98(3)	58(2)	$60(2)$	-4(2)	50(2)	3(2)
$\mathrm{C}(41)$	120(4)	61(3)	$68(3)$	-2(2)	66(3)	-2(2)
C(51)	119(4)	64(3)	67(3)	2(2)	64(3)	2(3)
O(61)	167(4)	66(2)	94(3)	11(2)	91(2)	2(2)
$\mathrm{C}(71)$	97(3)	58(3)	63(3)	-0(2)	49(3)	-0(2)
$\mathrm{C}(81)$	130(5)	70(3)	82(4)	$8(3)$	74(4)	2(3)
$\mathrm{C}(101)$	118(4)	58(3)	81(3)	$-1(3)$	59(3)	$-7(3)$
C(111)	143(5)	65(3)	85(4)	-6(3)	79(4)	-0(3)
C(121)	136(4)	63(3)	74(3)	-6(2)	72(3)	2(3)
Molecule (2)						
O(12)	158(3)	63(2)	$89(3)$	$-1(2)$	81(3)	3(2)
$\mathrm{N}(22)$	153(4)	69(3)	84(3)	-4(2)	82(3)	3(3)
N (32)	95(3)	65(2)	58(2)	-6(2)	43(2)	-5(2)
$\mathrm{C}(42)$	133(5)	70(4)	72(3)	$5(3)$	72(3)	4(3)
$\mathrm{C}(52)$	135(4)	64(3)	70(3)	2(2)	66(3)	-0(3)
O(62)	188(4)	76(3)	103(3)	$9(2)$	95(3)	-6(3)
C (72)	91(3)	63(3)	63(3)	3(2)	45(2)	$8(2)$
C(82)	128(4)	76(4)	69(3)	2(3)	61(3)	3(3)
$\mathrm{N}(92)$	159(4)	77(3)	81(3)	8(2)	75(3)	$-1(3)$
C (102)	122(5)	66(3)	94(4)	5(3)	62(3)	3(3)
C(112)	125(4)	74(4)	78(4)	$-2(3)$	57(3)	3(3)
C(122)	104(4)	71(3)	68(3)	$-6(2)$	51(3)	$-3(3)$

[^1]Table IV
Intermolecular interactions of hydrogen bond type in 3-N-pyridylsydnone. Estimated standard deviations of distances (pm) and angles $\left(^{\circ}\right.$) are in parentheses

Contact	A \cdots D	A \cdots H	A $\cdots \mathrm{H}-\mathrm{D}$
$\mathrm{O}^{\mathrm{iv}}(61) \cdots \mathrm{H}(42)-\mathrm{C}(42)$	342.5(8)	279(7)	135(6)
$\mathrm{O}^{\mathrm{iv}}(61) \cdots \mathrm{H}(122)-\mathrm{C}(122)$	327.3(8)	227(5)	161(4)
$\mathrm{O}^{\mathrm{iii}}(61) \cdots \mathrm{H}(111)-\mathrm{C}(111)$	340.4(7)	240(4)	157(4)
$\mathrm{N}^{\mathrm{if}}(91) \cdots \mathrm{H}(81)-\mathrm{C}(81)$	150.0(10)	276(9)	140(6)
$\mathrm{N}^{\mathbf{v}}(91) \cdots \mathrm{H}(102)-\mathrm{C}(102)$	339-2(9)	266(6)	135(4)
$\mathrm{O}^{\mathbf{i}}(62) \cdots \mathrm{H}(41)-\mathrm{C}(41)$	338.0(8)	242(5)	162(4)
$\mathrm{O}^{\mathrm{i}}(62) \cdots \mathrm{H}(121)-\mathrm{C}(121)$	331.3(8)	248(4)	141(3)
$\mathrm{O}^{\mathbf{v}}(62) \cdots \mathrm{H}(112)-\mathrm{C}(112)$	$340 \cdot 0(8)$	225(8)	165(5)
$\mathrm{N}^{\mathrm{i} i \mathrm{i}}(92) \cdots \mathrm{H}(101)-\mathrm{C}(101)$	338.0(9)	264(5)	135(4)
$\mathrm{O}^{\mathrm{iii}}(11) \cdots \mathrm{H}(101)-\mathrm{C}(101)$	345.2(7)	273(5)	134(3)
Symmetrically equivalent positions:	$\begin{array}{ll} x, & 1- \\ 1-x, & 1- \\ x, & 1+ \\ x, & -y, \\ x, & 1- \end{array}$	$\begin{aligned} & 1 / 2 \\ & z \\ & 1 / 2 \end{aligned}$	

probably influences the stability of the coloured intermediates. The problem will be discussed generally for the structure of the sydnone type in more detail in another paper. The stacking of molecules described above implies that the eight molecules in the unit cell are divided into two groups (each of them containing both symmetrically independent molecules) so that four molecules in one group form approximately the screw axis 2_{1} along the b direction. This property, implying the non-space group extinction of $0 k 0$ reflexions, may cause appearance of stacking faults in the crystal structure, which is consistent with the large observed anisotropy (Table III). However, this behaviour was not studied more deeply.

The molecular packing of 3-N-pyridylsydnone in the crystal is a result of numerous hydrogen bonds (Table IV). Nine symmetrically independent hydrogen bonds bound molecules inside the layers perpendicular to b axis; four of them are between symmetrically dependent molecules. The layers are inter-connected by the hydrogen bond $\mathrm{N}^{\mathrm{i}}(91) \ldots \mathrm{H}(81)-\mathrm{C}(81)$ between the pyridyl ring of the first molecule and its image related by the centre of symmetry.

The authors are indebted to Dr M. Sorm for the preparation of 3-N-pyridylsydnone.

REFERENCES

1. Tien J. M., Hunsberger I. M.: J. Amer. Chem. Scc. 77, 66C4 (1955).
2. Gutowsky H. S., Rutledge R. L., Hunsbetger I. M.: J. Chєm. Phys. 29, 1183 (1958).
3. Mill T., Van Roggen A., Wahling C. F.: J. Chem. Phys. 35, 1139 (1961).
4. Metz F. I., Serwos W. C., Welsh F. E.: J. Phys. Chem. 66, 2446 (1962).
5. Mitsui A., Ehara N.: Bull. Chem. Soc. Jap. 46, 327 (1973).
6. Nešpůrek S., Sorm M.: Czech. J. Phys. B25, 1051 (1975).
7. Nešpůrek S., Sorm M.: This Journal 42, 811 (1977).
8. Sorm M., Nešpůrek S.: This Journal 40, 1534 (1975).
9. Šorm M., Nespůrek S.: This Journal 40, 3459 (1975).
10. Hašek J., Obrda J., Huml K., Nešpůrek S., Chojnacki H., Šorm M.: Acta Crystalogr. B34, 2756 (1978).
11. Hašek J., Obrda J., Huml K., Nešpůrek S., Sorm M.: Acta Crystalogr. B35, 437 (1979a).
12. Hašek J., Obrda J., Huml K., Nešpůrek S., Sorm M.: Acta Crystalogr. B35, 2449 (1979b).
13. Nešpůrek S., Hašek J., Šorm M., Huml K., Obrda J., Lipinski J., Chojnacki H.: J. Mol. Struct. 82, 95 (1982).
14. Bärninghausen H., Jellinek F., Munnik J., Vos A.: Acta Crystalcgr. 16, 471 (1963).
15. Hope H., Thiessen W. E.: Acta Crystalogr. B25, 1237 (1969).
16. Hope H.: Acta Crystalogr. A34, S20 (1978).
17. Main P., Woolfson M. M., Lessinger L., Germain G., Declercq J. P.: MULTAN 74. A System of Computer Programs for the Automatic Solution of Crystal Structure from X-ray Diffraction Data (1974). University of York, England, and Louvain-la-Neuve, Belgium.
18. Overbeek O., Schenk H.: SIMPEL. In the book: Computing in Crystallography (H. Schenk, Ed.), p. 108. Delft University Press, 1978.
19. Beurskens, P. T., Bosman, W. P., Doesburg H. M., Van den Hark Th. E. M., Prick P. A. J., Noordik J. H., Beurskens G., Gould R. V., Parthasarathi V. in the book: Conformation in Biology (R. Srinivasan and M. Sarma, Eds), p. 389. Adenine Press, New York 1982.
20. Doesburg H. M., Beurskens P. T.: Acta Crystallogr. A39, 368 (1983).
21. Gould R. O., Van den Hark Th. E. M., Beurskens P. T.: Acta Crystallogr. A31, 813 (1975).
22. Sheldrick G. M.: SHELX 76. Program for crystal structure determination. University of Cambridge, England 1976.
23. International Tables for X-ray Crystallography: Vol. IV. Kynoch Press, Birmingham 1974.
24. Stewart R. F., Davidson E. R., Simpson W. T.: J. Chem. Phys. 42, 3175 (1965).
25. Cremer D., Pople J. A.: J. Appl. Crystallogr. 97, 1354 (1975).
26. Nardelli M.: Acta Crystallogr. C39, 1141 (1983).

Translated by V. Langer.

[^0]: * In the correct space group, the programs MULTAN and SIMPEL revealed both independent molecules at their correct positions.

[^1]: Collection Czechoslovak Chem. Commun. [Vol. 50] [1985]

